## Grade 7/8 Math Circles <br> March 18-21, 2024 <br> Polynomials - Problem Set

1. Determine if each expression is a polynomial. Explain your reasoning.
(a) 5
(b) $\frac{2}{x}-x^{2}$
(c) $x^{4}-6 x+1$
(d) $3^{x}-2 x$
(e) $x^{2024}+x^{18}+x^{3}$
2. Simplify each polynomial expression.
(a) $x-3 x^{3}+9 x-4+2 x^{3}$
(b) $x^{4}-6 x+1$
(c) $-x-7 x^{6}+5 x^{4}-2 x^{7}-10 x^{4}+5 x+x^{6}$
3. Recall the expression from part (e) of Question 1: $x^{2024}+x^{18}+x^{3}$. What is its dominant term and degree? Is the degree of the overall expression even or odd?
4. What is the end behaviour of the polynomial function $y=2 x^{17}-12 x^{6}+9$ ?
5. Explain whether the following statement is true or false:

The polynomial function $y=5 x^{3}-2 x^{2}+x-15$ may have 0,1 , 2 , or 3 real roots, but since it has a degree of 3 , it cannot have more than 3 roots.
6. Verify whether the following are roots of the polynomial function $y=2 x^{3}+5 x^{2}+x-2$.
(a) $x=1$
(b) $x=-1$
(c) $x=\frac{1}{2}$
(d) $x=2$
(e) $x=-2$
7. Consider the function $y=x^{2}+2 x+1$. Solve for the root(s) of the function and explain your result. What might the graph look like?
8. Are the roots of the function $y=-x^{2}-16$ real or imaginary? Explain how you know know without graphing.
9. The function $y=-3 x^{2}+30 x-75$ has a discriminant of zero and a root at $x=5$. Explain how we can find the maximum height of the graph of the function without graphing.
10. Find the intersection point(s) of the functions $y=2 x^{2}-47 x+9$ and $y=2 x^{2}+x+105$.
11. Two sports equipment companies compete to see who can generate the most revenue. Company 1 generates a total revenue $R_{1}$ (in thousands of dollars) after each month $t$ based on the function

$$
R_{1}=7 t^{3}+5 t^{2}-t-2
$$

while Company 2 generates revenue in thousands of dollars based on the function

$$
R_{2}=7 t^{3}-t^{2}+4 t-1
$$

At what time do the two companies generate the exact same revenue?
12. * The Pascal Trading Company sells hockey cards at sports conventions. They price all of their cards at $\$ 5$ each. At this price, they can expect to sell 165 cards each day. However, every time they increase the price of their cards by $\$ 1$, they sell an average of 15 less cards per day.
(a) How should the company price each card to generate the maximum possible revenue? (Note: The total revenue is found by multiplying the number of products by the cost of each product.)
(b) Each convention is one week long. What is the maximum revenue for the Pascal Trading Company during each convention?

